With Iterative and Bosonized Coupling towards Fundamental Particle Properties
نویسنده
چکیده
Previous results have shown that the linear topological potential-to-phase relationship (well known from Josephson junctions) is the key to iterative coupling and non-perturbative bosonization of the 2 two-spinor Dirac equation. In this paper those results are combined to approach the nature of proton, neutron, and electron via extrapolations from Planck units to the System of Units (SI). The electron acts as a bosonizing bridge between opposite parity topological currents. The resulting potentials and masses are based on a fundamental soliton mass limit and two iteratively obtained coupling constants, where one is the fine structure constant. The simple non-perturbative and relativistic results are within measurement uncertainty and show a very high significance. The deviation for the proton and electron masses are approximately 1 ppb (10−9), for the neutron 4 ppb.
منابع مشابه
Investigation on mechanical properties of composite made of sawdust and high density polyethylene
In this research, the effect of wood species and particle size on mechanicalproperties of wood plastic composites (WPC) made of fir (Abies alba) and beech(Fagus orientalis L.) sawdust and high density polyethylene (HDPE) wereinvestigated. Wood plastic composite (WPC) were made with 30% HDPE in abatch process at 185˚C, at two particle sizes of 40 mesh and 80 mesh. Maleicanhydride polypropylene (...
متن کاملCoupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material
This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...
متن کاملThe Thirring interaction in the two-dimensional axial-current-pseudoscalar derivative coupling model
We reexamine the two-dimensional model of massive fermions interacting with a massless pseudoscalar field via axial-current-pseudoscalar derivative coupling. Performing a canonical field transformation on the Bose field algebra the model is mapped into the Thirring model with an additional vector-current-scalar-derivative interaction (Schroer-Thirring model). The complete bosonized version of t...
متن کاملEffects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory
This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...
متن کاملKane-Mele-Hubbard model on the π-flux honeycomb lattice
We consider the Kane-Mele-Hubbard model with a magnetic π flux threading each honeycomb plaquette. The resulting model has remarkably rich physical properties. In each spin sector, the noninteracting band structure is characterized by a total Chern number C = ±2. Fine-tuning of the intrinsic spin-orbit coupling λ leads to a quadratic band crossing point associated with a topological phase trans...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002